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Abstract-A complete theory of helical thin elastic rods is applied to analyze the effect ofconstraint
due to clamp or socket end connections on changes to the lay angles of the constituent wires in
multilayered cables. While the effect on stresses in the wires is small. the end connection causes
slipping to occur betwecn the wires which could contribute to wear or fretting damage near the end
connection.

INTRODUCTION

Loading a straight multilayered cubic by axial force and twisting moment applied to its
ends produces chunges in the lay angle!! of the helical wires comprising the cable. The
change in the lay angle. in each layer of wires. is uniform well away from the ends; but
near the ends there is a transition region over which the effect of constraint of the end
connections. typically clamps or sockets. extends. In some recent experimental and theor­
etical work. Utting and Jones (1987a.b) have made an initial attempt to account for the
occurrence of this transition region. In the present paper. a detailed anulysis of the transition
region is presented. based on a complete theory of helical thin elastic rods developed recently
by the author, Ramsey (1988). Although this theory is based on the general theory of rods
due to Green and Laws (1966). it does not employ directors. The present theory is relatively
simple. including just four generalized strains which describe extension, twisting and two
components of bending. Excluded. in particular. are extensional strains in the nonnal cross­
section and transverse shear defonnation. These additional effects have been considered
recently by Naghdi and Rubin (1989) in connection with a contact problem in beam theory.
However, these effects are beyond the scope of the present investigation, and to treat the
interwire contact forces in the transition region on a consistent approximate basis, it is
necessary to neglect changes in wire diameters. [n order to simplify the analysis further,
interwire friction is also neglected.

SUMMARY OF A LINEAR THEORY OF HELICAL THIN ELASTIC RODS

The essential results from the rod theory presented by Ramsey (1988) are now sum­
marized as they apply to thin rods of circular cross-section. The motion of points on the
center-line in the rod is described by a position vector r = r(S, I), where S is arc length
along the center-line in the undefonned state, and 1 is time. The initial state at 1 = 0 is the
undefonned reference state. Material cross-sections of the rod defined as normal cross­
sections in the undeformed rod remain plane and nonnal as the rod defonns. The angular
velocity of these material cross-sections is described by the vector !l = !l(S./). A right­
handed orthononnal set of base vectors 8; = 8;(S, I). where i = 1.2, 3. is associated with
the rod center-line. The vector 8J in this set is the tangent vector. i.e.
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3, = , .
CS
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where s = 5(5. r) is current arc length along the center-line. The vectors a), ac rotate about
the center-line with the material cross-sections of the rod. Hence.

3, = n x a,. (2)

where the superposed dot denotes differentiation with respect to t. the material coordinate
5 being held constant. Differentiation of the base vectors a j with respect to 5 is described
by a skew-symmetric matrix 1\" = 1\,,(5. n. i.e.

(3)

where the repeated index implies summation. The initial values of K;j in the undeformed
reference state are denoted by Kij. The skew-symmetric matrix formed by the difference
(1\0- K j) measures bending and twisting of the rod. It is convenient to express this skew­
symmetric matrix in terms of the kinematic variables Wk = wk(5, t) defined by

(4)

where ('"k arc the permutation symools. It can oe shown that

(5)

The extensional strain I: of the rod center-line. defined by

(6)

along with the three kinematic variables UJk' are the four generalized strains.
The force and couple resultants acting on the side of a cross-section facing in the

direction of increasing 5 are denoted by the vectors N. M, respectively. The distributed
force f and the distributed couple g act along the rod center-line, where f, g are referred to
unit length in the undeformed rod. The dilTerential equations of equilibrium can be written
as:

aM
25' +(1 +£)3.1 x N+g = O. (7)

The components of N, M. f, g are referred to current base vectors, i.e.

N,=aj·N. Mj=a,'M, f, = a,' f, 9j = a,'g. (8)

The mechanical power P, per unit of length measured in the undeformed rod, is given by

(9)

Equations (1 )-(9) hold for arbitrarily-large deformations. For small strains in a thin elastic
rod with a circular cross-section of radius c, constitutive relations can be taken simply as
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where

N) = EAe, (10)

and E is Young's modulus, G the shear modulus.
When the center-line of a circular rod fonns a helix in the undefonned state, it is

convenient to orient the vectors 8 .. 82' at t = 0, to concide with the unit principal nonnal
and binonnal vectors, respectively, of the center-line. It then follows from the well-known
Frenet fonnulae and eqn (3), evaluated at t = 0, that

-K]o ,
o

(II)

where K, T are constants denoting the values of the curvature and torsion, respectively, of
the rod center-line in the undefonned state. In the currently deformed rod. it follows from
eqns (3), (4) and (II) that

(12)

The Frenet formulae can be used again. along with eqns (3). (6) and (12). to obtain
relations between current values of the curvature and torsion of the rod center-line. denoted
respectively by 11:, T, and the generalized strains e. Wk' These relations. linearized in e, Wk.

are:

( 13)

Also, the unit principal normal vector n and unit binonnal vector b along the center-line in
the current deformed state of the rod are related to the current values of 8 .. 82 by

(14)

The coefficient w./K in eqn (14) measures the small angle in the normal plane between 81

and n, and between 82 and b, in the current configuration.
For use later, the component fonns of eqns (5) and (7), for a helical rod, are now

noted. Since the right-hand side of eqn (5) is expressed in terms of current base vectors, it
is convenient to refer n to current base vectors. Thus

(15)

Equations, linearized for small strains, which express eqn (5) in tenns of components are
obtained by neglecting product terms of the form OjWk' It then follows from eqns (3), (5),
(12) and (15) that
Sl'~ ~8: fj-H
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(16)

(17)

( 18)

Similarly, equations of equilibrium, linearized for small strains, are obtained from eqns (7)
and (8) as:

(19)

(20)

(21 )

(22)

(23)

(24)

While eqns (13)-(24) have been linearized for small strains, they hold in the presence
of arbitrarily-large rotations, inasmuch as components of .n, Nand M are referred to
current base vectors ai' and the unit principal normal and binormal vectors nand b refer
to the center-line in the current deformed state of the rod.

The angle W 11K in eqns (13) and (14) can be identified with the angle/in Love (1944).
Love's theory is for an inextensible rod. When terms in e in eqn (13) are dropped, the strains
W2 and w) correspond essentially to the changes in curvature and twist in Love's theory.
However, since Love's treatment does not include an expression for mechanical power
corresponding to eqn (9), Love's angle / is not directly related to the component of bending
moment along the principal normal, as M , is related to WI by eqns (9) and (10). The
equilibrium equations (19)-(24) do coincide with the corresponding linearized equilibrium
conditions in Love's theory. On the other hand, Love's theory has no counterpart to eqns
(16)-( 18). Hence the significant difference between the present theory and Love's theory
lies in the kinematic relations and the constitutive equations.

LINEARIZED EQUATIONS FOR DISPLACEMENTS

Multilayered cables are made up oflayers of helical wires. In the undefonned reference
state, these helixes are conveniently described in terms of cylindrical coordinates (p, t/J, z)
and the associated orthonormal base vectors ep , e., e:. The center-line of a wire, in a typical
layer, lies on a cylindrical surface of radius R. The initial cylindrical coordinates of the
material point S on the wire center-line can be written as
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p = R, t/J = (SIR) sin~, z = Scos~, (25)

where the lay angle ~ is positive in a right-handed helix, and negative in a left-handed helix.
It is convenient to put

~ = (SIR) sin~, z = Scos~. (26)

Then (R, ~. Z) are the initial coordinates of the material point S in the fixed spatial
cylindrical coordinate system (p, t/J, z). The curvature and torsion of the wire center-line in
the undeformed reference state are given by

T = R- ' sin~cos~. (27)

When changes in wire diameters are neglected, the current cylindrical coordinates of
the material point S on the wire center-line in the deformed cable become

where

p= R, z = Z+w, (28)

t/I = t/I(S, I). w = w(S,I),

are the displacement components in cylindrical coordinates. The wire center-line in the
deformed cable is defined as a space curve by eqn (28), and current values of the three
invariants S, 1(. t of this space curve can be determined in terms of t/I. w. The results.
linearized in t/I. w. t. are. from Ramsey-(1988),

I( = K-2Kt+2sin~~~. (30)

The terms in t on the right-hand sides of eqns (30) and (31) arise from the approximation

a() _Ia() a()
"&=(1+&) as~(I-t)as' (32)

which follows from eqn (6). The four generalized strains t, ClJk can now be related to t/I. w
by using eqns (6) and (13), along with the results (29)-(31). Hence

(33)

(34)

(35)
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The kinematic relations (33)-(35) comprise a set of three equations which relate six
unknowns. the four generalized strains e. Wk and the two generalized displacements 1jJ. w.
To complete the set of equations for the problem. it is necessary to use the equilibrium
conditions and constitutive relations. In the equilibrium equations. the components of
distributed force and distributed couple h.. 9k. which take account of any interwire forces
and couples. constitute additional unknowns. A condition of rotational symmetry applies
to the wires in each layer. i.e. every wire in the same layer is in the same state of loading
and deformation. Consideration of this condition. along with the fact that interwire reac­
tions must be equal and opposite, and the assumption of frictionless contacts between the
wires all suggest that the only possible wire interactions consist of normal contact stresses
between the wires which produce a radially-directed force component!I' Accordingly.

(36)

and there is no transfer of externally-applied load from one wire to another. Equation (36)
leads to a consistent, well-posed set of equations for the problem. The constitutive relations
(10) determine N}, M .. in terms of e, w... Then the equilibrium equations (19)-(24) and the
kinematic relations (33)-(35) form a set of nine linear equations for the nine unknowns e,
Wk' 1jJ. W, N •• N~ and ft. The three kinematic relations (16)-(18), which introduce the
additional kinematic variables Ok. are used in formulating boundary conditions for the
clamped-end condition.

The system of nine equations can be solved conveniently by treating the two generalized
displacements 1jJ. was the fundamental unknowns. and obtaining two simultaneous equa­
tions for determining them. Since there are no constitutive relations for the transverse shear
forces N I' N 2. it is convenient to eliminate them at the outset using the equilibrium equations.
From eqns (21). (27) and (36). it follows that

(37)

Also, eqns (20). (27), (36) and (37) yield the result

(38)

Equation (38) simply states. in differential form, the condition that the axial component of
load carried by a wire is constant along the length of the wire. i.e. oN:/uS = 0, where

(39)

In reducing the remaining equations from the original set to a set of two. it is convenient
to introduce W = W(S, I) as a dimensionless form of w, and to use <1> as a dimensionless
form of the independent variable S. Thus,

w = Rcsc(X W, 00 R- 1 ' ()'as = SIO:X, (40)

Then. from eqns (6), (29) and (40), it follows that

When eqns (40) and (41) are used with (34). an expression for Wz can be written as

(41 )
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Rw: = sin2 :x(1 +cos2 a)r/!' -sin2 acos :xW.
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(42)

N I is determined using eqns (10), (37) and (41). With N. known, eqn (22) can be used to
solve for WI' In view of eqns (10), (36), (40)-(42), it follows that

(43)

Now that both e and w. have been determined, w) can be found from eqn (35). When eqn
(~O) is used as well, it is found that

Rw) = - [tan :x+sin 2:x+ (4R 21e1 sec:x csca]r/!'H +sin a cos) ar/!'

+ [2 sin ex- (4R 2/e 2) csc) ex] W'" + sin) exW'. (44)

So far. eqns (22) and (24) have not been used. These two remaining equations determine
two simultaneous equations for r/!. W. Equation (22) is differentiated with respect to S, and
eqn (36) noted. Then oMJlcS is replaced by KM.. noting eqns (24) and (36), and oN21aS
is replaced by - cot ex aN )Ics, from eqn (38). Finally, substitutions are made using eqns
(10), (27), (~0)-(43). The result is:

(45)

where

AI = sin ex tan ex(I +cos 2 ex+(4R 2Ie 2
) csc 2 ex].

A2 = -sin:xtanex(1 +cos2 ex) + (4R 2Ic2
) secexcos2ex,

B1 = -sin 2 :x+(4R 2/e 2)csc 2 ex,

B 2 = sin 2 a+(4R 2/e 2)csc2 excos2ex.

In reducing eqn (24) to an equation in r/!, W, it is convenient to express Young's modulus
E in terms of the shear modulus G and Poisson's ratio v, i.e.

E = 2G(1 +v). (46)

When substitutions are made in eqn (24), noting (36) and using eqns (to), (27), (40), (43),
(44) and (46), it follows that

(47)

where

C I = seca[l +2cos2 ex+(4R2Ie 2
) csc 2 ex],

C 2 = cos) ex + (I + v) sin ex tan ex[l + cos 2 ex + (4R 2Ie 2
) csc 2 ex],

D 1 = -2+(4R2/e 2)csc4 ex,

D2 = -vsin 2 :x+(I+v)(4R2Ie 2)csc2 ex.

It can be noted that the coefficients in eqns (45) and (47) are even functions of the lay angle
ex, and hence these coefficients have the same values for both right-handed and left-handed
helixes of the same pitch.
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SOLUTION OF LINEARIZED EQUATIONS FOR DISPLACEMEr-.1S

The general solution of eqns (45) and (47) includes the solution for uniform extension
and twisting of the cable, which can be written in terms of the nominal cable extensional
strain £: = £:(r), and unit twist 0 = OCt) as

r/I = OZ. (48)

Equation (48) implies that the displacement components w, r/I of material points on wire
center-lines in the cable cross-section Z = constant are the same for all wires in the cable.
This point will be examined further later.

A semi-infinite cable initially occupying the region z ~ 0 is now considered. A solution
ofeqns (45) and (47) appropriate for describing the localized effect ofconstraint due to the
end connection has the form :

where

r/I = r/I.efJl~+r/l2efJ:~,

W = k.r/I, efJl~+k2r/12 efJ2~,

cJ) = (ZIR) tan a

A o = AID,-B.CI,

Bo = A2DI+AID2-B.C2-B2C"

Co = A 2D 2-B2C2,

k. = -(A.P;-A 2)f(B I P;-B2),

k 2 = -(A,P~-A2)/(B,Pi-B2)'

(49)

(50)

(51 )

and r/ll = r/l1(r), r/l2 = r/l2(1) remain undetermined. Equation (50) follows from eqn (26) and
the condition of rotational symmetry. Thus the solution expressed by eqn (49) holds for all
wires in the same layer, but differs from layer to layer. The right-hand side of eqn (51)
depends on the geometric parameters IX and Ric, and Poisson's ratio v. When representative
numerical values for these quantities are used to evaluate the right-hand side of eqn (51),
it appears always to be positive. Then, since cJ) = (ZIR) tan a, it is appropriate to take the
negative square roots for PI and P2 when IX> 0, and the positive square roots when ~ < O.
Thus a solution exhibiting exponential decay with distance Z from the end connection can
always be found.

BOUNDARY CONDITIONS AT A CLAMPED END

Boundary conditions for the clamped-end condition are now formulated using eqns
(16)-(18). In view ofeqns (27) and (40), eqns (17) and (18) can be rewritten as

(52)

Next, eqn (16) is differentiated with respect to cJ), using eqn (40), and then substitutions are
made from eqns (27) and (52). Hence 0, satisfies the equation



Effcct of end conncctions on helical wires

0~+01 = RCSCIXW'I+RcotlXciJ~-Rw3'
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(53)

The right-hand side of eqn (53) can be expressed directly in terms of t/J. W by using
eqns (42)-(44). The result is

(54)

It is useful to introduce components of n referred to the orthonormal base vectors ep•
e.., e. in cylindrical coordinates, i.e.

OIP=eIP·n.

where

(55)

(56)

(57)

Equations (56) and (57) are differentiated with respect to <1>. and then substitutions are
made from eqn (52). Thus

(58)

(59)

Equation (58) can be rewritten using eqn (53) to express 0 1 in terms ofO~. The resulting
equation can be integrated once with respect to <1>. Hence

0IP = -0'1 +RCSCIXWI' (60)

No constant of integration is included on the right-hand side of eqn (60) because just
the particular solution ofeqns (16)-( 18) is ofimmediate interest. The homogeneous solution
ofeqns (16)-(18) describes rigid-body rotation.

During extension and twisting of the cable, the clamp or socket which forms the end
connection is treated as a rigid body having an angular velocity 0 0 about the z-axis and a
velocity of translation Vo along the z-axis. The wires comprising the cable are assumed to
be rigidly embedded inside the end connection. Thus, at the face of the end connection, in
the cable cross-section 2 = 0, the velocity components .{J, wof material points on wire
center-lines must match the corresponding velocity components of the end connection.
Hence

w= Vo (2 = 0),

.{J = 0 0 (2 = 0).

(61)

(62)

Also, the angular velocity components Op. 0IP' O. of wire cross-section, evaluated at 2 = 0,
must match the angular velocity components of the end connection. Thus,

Op = OIP = 0 (2 = 0),

O. = 0 0 (2 = 0).

In view of eqns (55) and (60), eqn (63) can be rewritten as

(63)

(64)
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0, = 0 (Z = 0),

0'1 = Rcsccr.wl (Z = 0).

(65)

(66)

Equations (61)-(66) hold uniformly for all wires in the cable.
The boundary conditions, eqns (65) and (66), are now used to determine 1/11' 1/12 in the

solution given by eqn (49). The solutions described by eqn (48) and eqn (49) are superposed,
and introduced on the right-hand side of eqn (54). The particular solution of eqn (54) can
be written as

(67)

where

Next, the right-hand side of eqn (67) is substituted in the boundary conditions, eqns (65)
and (66). The two equations which result determine ~Io ~2 in terms of a, :

Equations (40), (43) and (49) have been used in obtaining eqn (70). The solution of eqns
(69) and (70) can be written as:

(71)

The coefficients q\, q2 depend on cr., R, c and v.
The boundary conditions expressed by eqns (65) and (66) govern bending and twisting

of the individual constituent wires in the transition region. Two of the remaining boundary
conditions, eqns (61) and (62), govern axial and circumferential sliding ofone layer of wires
with respect to adjoining layers. In order that the complete solution for the displacements,
formed by superposing eqns (48) and (49), meet the boundary conditions at Z = 0 on ~V

and ~, it is necessary to add terms which are independent of Z. These additional terms do
not affect the generalized strains or the boundary conditions already satisfied, namely eqns
(65) and (66). Thus, when eqn (40) is noted

(72)

(73)

where 1/10' Wo depend only on t, and

"'0 = Vo·

The last unused boundary condition, eqn (64) for 0" affects relative rotation of the
constituent wires. Equation (59) for 0; is expressed in terms of 1/1, W by using eqns (42)
and (44). The result is immediately integrable with respect to «1>, and the solution for 0:
which satisfies eqn (64) can be written as

11 ,. II ~
0: = 0 0 +uZ - (I-cosa:(C, +k,D,)PiJI/II (I -e I )

- [1-cosa:(C, +k2D,>Pn~2(I-eIl2~), (74)

when eqns (40), (50), (72) and (73) are used.
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As a final result. expressions for the generalized strains are noted. The total strains E.

~ are written as the sum of two parts

where

(75)

and

f = RfJ sin :x cos ~ +E: cos~ :X.

RciJ } = RO cos 4 ~+E: sin 3 ~ cos :x,

(76)

(77)

(78)

(79)

(SO)

(81 )

(82)

Rwj = sin CC[COS
2 1X+k t sin 2 1X - (C, +k I Ddflil fll '" I efl,'11

+ sin IX[cos 2
IX +k 2 sin 2

1X - (C I +k 2[) I >In Jf/ 21/J 2 ell/II, (X3)

In eqns (75)-(83). i, WlL denote the uniform values of the strains that prevail as Z -XJ,

and E"', w: denote the loc.l1ized superposed strains that result from constraint due to the
end connection. The components iT, uilL are obtained by substituting from eqn (48) in I:qns
(40)-(44), whik c"', w: are determined using eqns (41 )-(44) and (49).

In thin rods of circular cross-section, the three-dimensional stresses and strains can
reasonably be assumed to vary linearly over the cross-section. Then the generalized strains
WlL can be converted to three-dimensional strains at the wire surt~lce by multiplying by c,

the wire radius, i.e. ±cw I, ± CW 2 arc the strains in the extreme fibers due to the bending
moments M I> M 2' while cw) is the shear strain at the wire surface due to the twisting
moment M J•

ILLUSTRATION

Equations (80)-(83) have been evaluated numerically for a four-layer electric power
transmission cable designated Bersimis 42/7 ACSR conductor (Lanteigne. 1985). The cable
consists of a straight central wire and four layers of helical wires. Two cases ofloading were
considered: extension without twisting (l:: #- 0, 0 = 0), and twisting without extension
(e: = 0, 0 #- 0). In both cases, in all layers. the maximum magnitudes of the strains e"'. w:
occur right at the face of the end connection (2 = 0). For the strains l:"'. wT. w!, the
magnitudes diminish to less than 10% of their maximum values within 100 mm of the end,
the overall cable diameter being 35 mOl. The strain component w!. which measures twisting
of the wires, is more persistent, its magnitude diminishing only to less than 20% of the
maximum within tOO mOl of the end, in the outermost layer. For the case of extension
without twisting. the maximum magnitudes of the three-dimensional strains l;"', cw: arc less
than 3% of 8:. where 1:; is the extensional strain in the straight central wire.

For the case of twisting without extension. a convenient reference strain is the shear
strain on the surface of the straight central wire. With Co ( = 1.27 mOl) denoting the radius
of the cross-section of the straight central wire. this strain is coO. In this case. the maximum
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magnitudes of the bending strains cwr. cw! in the wires in the two outer layers are as large
as coO. The other maximum strain magnitudes are much smaller. In a practical situation of
combined extension and twisting. the reference shear strain cof} due to twisting would be
likely to be quite small compared to C;. Hence. constraint due to the end connection would
increase the strains by only a few per cent over the uniform values which prevail well away
from the end.

D[SCUSS[ON

In view of the numerical results for the ACSR conductor. the increase in the stresses
in the constituent wires due to constraint of the end connection is oflittle or no consequence.
A much more significant effect of constraint would be the relative motion of wire surfaces
which occurs at interwire contacts. and the resulting wear and fretting damage under
fluctuating load. In the absence of constraint due to the end connection. t/J I = t/J! = O. and
eqns (72)-(74) reduce to

(84)

(85)

As a consequence of eqns (84) and (85), ,fJ. n; and ~' have the same respective values for
all wires in a cablc cross-section; thus there is no sliding of one layer of wires. cir­
cumferentially or axially. with respect to adjoining layers. and there is no relative rotation
of wire cross-sections in the plane of the cable cross-section. The relative motion of wire
surfaces at the interwire contacts and the frictional forces developed. in the case of uniform
extension and twisting of a cable. have been discussed in detail by Ramsey (1990). The
terms in t/J 10 t/J 2 in eqns (72)-(74) vary from layer to layer, and hence end constraint causes
sliding of one I~lyer of wires with respect to the adjoining layers. and also relative rotation
of the wires. In the absence of friction. this relative motion of wire surfaces at the interwire
contacts extends along the entire length of the cable. Friction would have the effect of
damping out this relative motion, and restricting it to the vicinity of the end. In a
multilayered cable with friction, there would be some transfer of load from one layer of
wires to another, near the end.
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